Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Pentaacetonitrilebromoaluminium(III) bis[tetrabromoaluminium(III)] acetonitrile solvate

Peter C. Junk,† Brian W. Skelton* and Allan H. White
Department of Chemistry, University of Western Australia, Crawley, WA 6009, Australia
Correspondence e-mail: bws@crystal.uwa.edu.au

Received 14 May 2003
Accepted 22 May 2003
Online 30 June 2003

Anhydrous aluminium(III) tribromide crystallizes from acetonitrile as a disolvate, $\mathrm{AlBr}_{3} \cdot 2 \mathrm{MeCN}$, in the form $\left[\mathrm{AlBr}\left(\mathrm{C}_{2} \mathrm{H}_{3}-\right.\right.$ $\left.\mathrm{N})_{5}\right]\left[\mathrm{AlBr}_{4}\right]_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$, which is isomorphous with its orthorhombic chloride counterpart.

Comment

Aluminium trichloride crystallizes from acetonitrile as the acetonitrile disolvate $\mathrm{AlCl}_{3} \cdot 2 \mathrm{MeCN}$ (orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$), which has been shown to be of the form $\left[\mathrm{AlCl}(\mathrm{NCMe})_{5}\right]\left[\mathrm{AlCl}_{4}\right]_{2} \cdot \mathrm{MeCN}(Z=4)$ by a single-crystal X-ray study (Beattie et al., 1979). By contrast, $\mathrm{FeCl}_{3} \cdot 2 \mathrm{MeCN}$ (orthorhombic, $P n a 2_{1}$) is of the form cis- $\left[\mathrm{FeCl}_{2}(\mathrm{NCMe})_{4}\right]$ $\left[\mathrm{FeCl}_{4}\right](Z=4)$, while a stoichiometric mixed-metal adduct, $\mathrm{AlCl}_{3} \cdot 2 \mathrm{FeCl}_{3} \cdot 6 \mathrm{MeCN}$, can be crystallized in the $P 2_{1} 2_{2} 2_{1}$ form $(Z=4)$ as $\left[\mathrm{AlCl}(\mathrm{NCMe})_{5}\right]\left[\mathrm{FeCl}_{4}\right]_{2} \cdot \mathrm{MeCN}$ (Gao et al., 1993). While the form of the cation differs between the pure aluminium and iron complexes, it may be that the difference in form is influenced by increased metal-halide distances throughout the transition, and in this context it is of interest to consider the nature of crystalline material deposited from solutions of aluminium bromide in acetonitrile.

The title compound, (I) (Fig. 1), was found to be isostructural with $\mathrm{AlCl}_{3} \cdot 2 \mathrm{MeCN}$, the coordinate setting of the former being a connected set based on that of the latter. The volumes of the $\mathrm{AlCl}_{3} \cdot 2 \mathrm{MeCN}, \mathrm{FeCl}_{3} \cdot 2 \mathrm{MeCN}$ and $\mathrm{AlBr}_{3} \cdot 2 \mathrm{MeCN}$ units are 258.6, 253.3 (both at 295 K) and $269.0 \AA^{3}(153 \mathrm{~K})$, respectively, while for $\mathrm{AlCl}_{3} \cdot 2 \mathrm{FeCl}_{3} \cdot 6 \mathrm{MeCN}(295 \mathrm{~K})$, the corresponding value is $257.0 \AA^{3}$. The present value, even at low temperature, thus exceeds those of all counterpart roomtemperature structures by a considerable margin, suggesting that packing volume is not a prime determinant of the struc-

[^0]tural type. The structure of the anion is similar to numerous precedents; in the cation, the $\mathrm{Al}-\mathrm{N}$ distance trans to the halide in (I) [2.003 (7) \AA; Table 1] is comparable to the counterpart value in the chloride analogue $[2.021$ (8) \AA] and is

(I)
longer than the other $\mathrm{Al}-\mathrm{N}$ distances in both cases. The present determination appears to be the first that describes bromine coordinated to 'octahedral' aluminium(III).

Figure 1
A projection of the cation, showing displacement ellipsoids at the 50% probability level for non- H atoms. H atoms are shown with arbitrary radii of $0.1 \AA$.

Experimental

Dry acetone (ca 5 ml) was added to a small sample (ca 0.1 g) of aluminium tribromide in a Schlenk flask and dissolved exothermically, giving a clear solution. The excess solvent was reduced in vacuo and the final residue was recrystallized from a few drops, being very soluble. The crystals in isolation from the mother liquor readily decompose on exposure to the atmosphere.

Crystal data

```
\(\left[\operatorname{AlBr}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{5}\right]\left[\mathrm{AlBr}_{4}\right]_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\)
\(M_{r}=1046.4\)
Orthorhombic, \(P 2_{1} 2_{1} 2_{1}\)
\(a=10.406\) (1) \(\AA\)
\(b=14.479\) (2) \(\AA\)
\(c=21.421\) (3) \(\AA\)
\(V=3227.5(7) \AA^{3}\)
\(Z=4\)
\(D_{x}=2.153 \mathrm{Mg} \mathrm{m}^{-3}\)
```

Mo $K \alpha$ radiation
Cell parameters from 6185 reflections
$\theta=2.6-26.4^{\circ}$
$\mu=11.27 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Block, colourless
$0.18 \times 0.15 \times 0.12 \mathrm{~mm}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Al1-Br1	2.380 (2)	Al2-Br22	2.305 (3)
Al1-N11	2.003 (7)	Al2-Br23	2.293 (3)
Al1-N21	1.972 (7)	Al2-Br24	2.283 (3)
Al1-N31	1.967 (7)	Al3-Br31	2.302 (3)
Al1-N41	1.983 (7)	Al3-Br32	2.287 (3)
Al1-N51	1.972 (7)	Al3-Br33	2.292 (3)
Al2-Br21	2.293 (3)	Al3-Br34	2.288 (3)
Br1-Al1-N11	178.7 (2)	N41-Al1-N51	91.1 (3)
Br1-Al1-N21	94.1 (2)	Br21-Al2-Br22	107.50 (12)
Br1-Al1-N31	92.8 (2)	Br21-Al2-Br23	112.17 (12)
Br1-Al1-N41	94.3 (2)	Br21-Al2-Br24	109.80 (12)
Br1-Al1-N51	93.7 (2)	Br22-Al2-Br23	109.89 (12)
N11-Al1-N21	87.2 (3)	Br22-Al2-Br24	109.20 (12)
N11-Al1-N31	87.6 (3)	Br23-Al2-Br24	108.24 (12)
N11-Al1-N41	85.3 (3)	$\mathrm{Br} 31-\mathrm{Al3}-\mathrm{Br} 32$	111.19 (11)
N11-Al1-N51	85.0 (3)	$\mathrm{Br} 31-\mathrm{Al3}-\mathrm{Br} 33$	109.81 (11)
N21-Al1-N31	90.5 (3)	Br31-Al3-Br34	107.78 (11)
N21-Al1-N41	87.5 (3)	Br32-Al3-Br33	108.50 (11)
N21-Al1-N51	172.2 (3)	Br32-Al3-Br34	109.08 (12)
N31-Al1-N41	172.7 (3)	$\mathrm{Br} 33-\mathrm{Al3}-\mathrm{Br} 34$	110.47 (11)
N31-Al1-N51	89.9 (3)		

Data collection

Bruker SMART CCD

diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.126, T_{\text {max }}=0.252$
32073 measured reflections
4571 independent reflections

Refinement

Refinement on F

$$
\begin{aligned}
& w=1 /\left(\sigma^{2} F+0.0004 F^{2}\right) \\
& (\Delta / \sigma)_{\max }=0.016 \\
& \Delta \rho_{\max }=0.67 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.57 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack }(1983) \\
& \text { Flack parameter }=0.04(1)
\end{aligned}
$$

$R=0.029$
$w R=0.027$
$S=0.99$
3187 reflections
272 parameters
H -atom parameters not refined
H atoms were located from difference Fourier maps, placed at idealized positions $\left[\mathrm{C}-\mathrm{H}=0.95 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$ and not refined.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: Xtal3.5 (Hall et al., 1995); program(s) used to solve structure: Xtal3.5; program(s) used to refine structure: CRYLSQ in Xtal3.5; molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1411). Services for accessing these data are described at the back of the journal.

References

Beattie, I. R., Jones, P. J., Howard, J. A. K., Smart, L. E., Gilmore, C. J. \& Akitt, J. W. (1979). J. Chem. Soc. Dalton Trans. pp. 528-535.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gao, Y., Guery, J. \& Jacoboni, C. (1993). Acta Cryst. C49, 147-151.
Hall, S. R., King, G. S. D. \& Stewart, J. M. (1995). Xtal3.5. University of Western Australia, Perth: Lamb.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: \dagger Present address: Department of Chemistry, Monash University, Victoria 3800, Australia.

